Building an interpretable fuzzy rule base from data using Orthogonal Least Squares Application to a depollution problem
نویسندگان
چکیده
In many fields where human understanding plays a crucial role, such as bioprocesses, the capacity of extracting knowledge from data is of critical importance. Within this framework, fuzzy learning methods, if properly used, can greatly help human experts. Amongst these methods, the aim of orthogonal transformations, which have been proven to be mathematically robust, is to build rules from a set of training data and to select the most important ones by linear regression or rank revealing techniques. The OLS algorithm is a good representative of those methods. However, it was originally designed so that it only cared about numerical performance. Thus, we propose some modifications of the original method to take interpretability into account. After recalling the original algorithm, this paper presents the changes made to the original method, then discusses some results obtained from benchmark problems. Finally, the algorithm is applied to a real-world fault detection depollution problem.
منابع مشابه
A Combination-of-Tools Method for Learning Interpretable Fuzzy Rule-Based Classifiers from Support Vector Machines
A new approach is proposed for the data-based identification of transparent fuzzy rule-based classifiers. It is observed that fuzzy rule-based classifiers work in a similar manner as kernel function-based support vector machines (SVMs) since both model the input space by nonlinearly maps into a feature space where the decision can be easily made. Accordingly, trained SVM can be used for the con...
متن کاملSimplifying fuzzy rule-based models using orthogonal transformation methods
An important issue in fuzzy-rule-based modeling is how to select a set of important fuzzy rules from a given rule base. Even though it is conceivable that removal of redundant or less important fuzzy rules from the rule base can result in a compact fuzzy model with better generalizing ability, the decision as to which rules are redundant or less important is not an easy exercise. In this paper,...
متن کاملSCOLS-FuM: A Hybrid Fuzzy Modeling Method for Telecommunications Time-Series Forecasting
An application of fuzzy modeling to the problem of telecommunications time-series prediction is proposed in this paper. The model building process is a two-stage sequential algorithm, based on Subtractive Clustering (SC) and the Orthogonal Least Squares (OLS) techniques. Particularly, the SC is first employed to partition the input space and determine the number of fuzzy rules and the premise p...
متن کاملInterpretable support vector regression
This paper deals with transforming Support vector regression (SVR) models into fuzzy systems (FIS). It is highlighted that trained support vector based models can be used for the construction of fuzzy rule-based regression models. However, the transformed support vector model does not automatically result in an interpretable fuzzy model. Training of a support vector model results a complex rule...
متن کاملA Solution to the Problem of Extrapolation in Car Following Modeling Using an online fuzzy Neural Network
Car following process is time-varying in essence, due to the involvement of human actions. This paper develops an adaptive technique for car following modeling in a traffic flow. The proposed technique includes an online fuzzy neural network (OFNN) which is able to adapt its rule-consequent parameters to the time-varying processes. The proposed OFNN is first trained by an growing binary tree le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Fuzzy Sets and Systems
دوره 158 شماره
صفحات -
تاریخ انتشار 2007